The Pi-pad Attenuator
As well as the T-pad attenuator we looked at previously, there is another type of voltage controlled attenuator
design commonly used in radio frequency and microwave transmission lines called the Pi-pad Attenuator, or
π-pad attenuator. The Pi-pad attenuator is so
called because its design resembles that of the Greek letter
pi ( π ) meaning that it has one series resistor and two parallel shunt
resistors to ground at the input and the output.
The Pi-pad attenuator is another fully symmetrical purely resistive
network that can be used as a fixed attenuator between equal
impedances or for impedance matching between unequal impedances. The
circuit configuration of the Pi-pad attenuator is given below.
Basic Pi-pad Attenuator Circuit
We can see that the Pi-pad attenuator is symmetrical looking at the attenuator from either end and this type of attenuator design can be used to impedance match either equal or unequal transmission lines. Generally, resistors R1 and R3 are of the same value but when designed to operate between circuits of unequal impedance these two resistor can be of different values.
Pi-pad Attenuator with Equal Impedances
We have said previously, that the Pi-pad attenuator is a symmetrical attenuator design consisting solely
of passive resistor elements making it linear in its design allowing for its input and output terminals to be transposed with
each other. This makes the Pi-pad attenuator ideal for insertion between two equal impedances
( ZS = ZL ) to reduce signal levels.
In this case the three resistive elements are chosen to ensure that the input impedance and output
impedance match the load impedance which forms part of the attenuator network. As the Pi-pad's input and output impedances
are designed to perfectly match the load, this value is called the "characteristic impedance" of the symmetrical Pi-pad
network.
Then the equations given to calculated the resistor values of a Pi-pad attenuator circuit used for impedance matching
at any desired attenuation are given as:
Pi-pad Attenuator Equations
where: K is the impedance factor and Z
is the source/load impedance.
Example No1
A Pi-pad attenuator circuit is required to reduce the level of an audio signal by 10dB while matching the impedance
of a 75Ω network. Calculate the values of the three resistors required.
Then resistors R1 and R3 are equal to 144Ω and
resistor R2 is equal to 107Ω, or the nearest preferred values.
Again as with the T-pad Attenuator,
we can produce standard tables for the values of the series and parallel impedances required to construct a 50Ω, 75Ω or 600Ω
symmetrical Pi-pad attenuator circuit. The calculated values of resistors, R1, R2 and
R3 are given as.
dB Loss | K factor | 50Ω Impedance | 75Ω Impedance | 600Ω Impedance | |||
R1, R3 | R2 | R1, R3 | R2 | R1, R3 | R2 | ||
1.0 | 1.1220 | 869.5Ω | 5.8Ω | 1K3Ω | 8.7Ω | 10K4Ω | 69.2Ω |
2.0 | 1.2589 | 436.2Ω | 11.6Ω | 654.3Ω | 17.4Ω | 5K2Ω | 139.4Ω |
3.0 | 1.4125 | 292.4Ω | 17.6Ω | 438.6Ω | 26.4Ω | 3K5Ω | 211.4Ω |
6.0 | 1.9953 | 150.5Ω | 37.4Ω | 225.7Ω | 56.0Ω | 1K8Ω | 448.2Ω |
10.0 | 3.1623 | 96.2Ω | 71.2Ω | 144.4Ω | 106.7Ω | 1K2Ω | 853.8Ω |
18.0 | 7.9433 | 64.4Ω | 195.4Ω | 96.6Ω | 293.2Ω | 772.8Ω | 2K3Ω |
24.0 | 15.8489 | 56.7Ω | 394.6Ω | 85.1Ω | 592.0Ω | 680.8Ω | 4K7Ω |
32.0 | 39.8107 | 52.6Ω | 994.6Ω | 78.9Ω | 1K5Ω | 630.9Ω | 11K9Ω |
Note, as the amount of attenuation loss required by the Pi-pad circuit increases, the impedance of the series
resistor R2 also increases while the parallel shunt impedance values of both resistors R1
and R3 decreases. This is characteristic of a symmetrical Pi-pad attenuator circuit used between
equal impedances. Also, even at an attenuation of 32dB the series impedance values are still fairly high and not in the one
or two ohm range as with the T-pad attenuator.
This means then that a single Pi-pad attenuator
network can achieve much higher levels of attenuation
compared to the equivalent T-pad network as the parallel shunt
impedances are never less than the characteristic impedance of
the transmission line due to the extremely high "K" factor value. For
example, a transmission line with a characteristic impedance
of 50Ω with an attenuation of -80dB would give shunt resistors R1 and R3
a value of 50Ω each while the series resistor R2 would be equal to 250KΩ,
Pi-pad Attenuator with Unequal Impedances
As well as using the Pi-pad attenuator to reduce signal levels in a circuit with equal impedances,
( ZS = ZL ) we can also use it for impedance
matching of unequal source and load impedances ( ZS ≠ ZL ).
However, to do so we need to modify the previous equations a little to
take into account the unequal loading of the source and
load impedances on the attenuator circuit. The new equations given for
calculating the resistive elements of a Pi-pad attenuator
for unequal impedances are.
Pi-pad Attenuator Equations for Unequal Impedances
where: K is the impedance factor, ZS
is the larger of the source impedance and ZL is the smaller of the load impedances.
We can see that the equations for calculating the Pi attenuators three resistor values are much more complex
when it is connected between unequal impedances due to their effect on the resistive network. However, with careful calculation
we can find the value of the three resistances for any given network impedance and attenuation as follows:
Example No2
An unbalanced non-symmetrical Pi-pad attenuator circuit is required to attenuate a signal between
a radio transmitter with an output impedance of 75Ω and a power signal strength meter of impedance 50Ω by 6dB. Calculate
the values of the required resistors.
Resistor R1 Value
Resistor R2 Value
Resistor R3 Value
Giving us the following nonsymmetrical Pi attenuator circuit:
The maths involved for calculating the resistor
values of a Pi-pad attenuator used between unequal impedances is
more complex than those used to calculate the values between equal
impedances. As such Pi-pad attenuators tend to be used more for
signal attenuation on transmission lines with matching source/load
impedances ZS
= ZL .
Balanced-Pi Attenuator
The balanced-Pi attenuator or "Balanced-π Attenuator" for short, uses an additional resistive element
in the common ground line to form a balanced resistive network as shown below.
Balanced-Pi Attenuator Circuit
The balanced-Pi attenuator is also called an O-pad attenuator because the layout of its
resistive elements form the shape of a letter "O" and hence their name, "O-pad attenuators". The resistive values of the
balanced-Pi circuit are firstly calculated as an unbalanced Pi-pad configuration connected between equal impedances the same
as before, but this time the value of the series resistor R2 is halved (divided by two) placing
half in each line as shown. The calculated resistive value of the two parallel shunt resistors remain at the same.
Using the values previously calculated above for the unbalanced Pi-pad attenuator gives, series resistor
R2 = 106.7÷2 = 53.4Ω for the two series resistors and the parallel shunt
resistors, R1, R3 = 144.4Ω the same as before.
Pi-pad Attenuators are one of the most commonly used symmetrical attenuator circuits
and as such its design is used in many commercially available attenuator pads. While the Pi-pad attenuator can achieve a
very high level of attenuation in one single stage, it is better to build a high loss attenuator of over 30dB by cascading
together several individual Pi-pad sections so that the final level of attenuation is achieved in stages. When this is done,
the number of resistive elements required in the design can be reduced as adjoining resistors can be combined together. So
for the Pi-pad this simply means that the two adjoining parallel shunt resistors can be added together.
0 comments:
Post a Comment