AC Inductance
We know from the tutorials about
Inductors,
that inductors are basically coils or loops of wire
that are either wound around a hollow tube former (air cored) or wound
around some ferromagnetic material (iron cored) to increase their
inductive
value called inductance. Inductors store their energy
in the form of a magnetic field that is created when a DC voltage is
applied
across the terminals of an inductor. The growth of the current flowing
through the inductor is not instant but is determined by the inductors
own self-induced or back emf value. Then for an inductor coil, this back
emf voltage VL is proportional to
the rate of change of the current flowing through it.
This current will continue to rise until it reaches
its maximum steady state condition which is around five time constants
when this self-induced back emf has decayed to zero. At this point a
steady state DC current is flowing through the coil, no more back emf is
induced to oppose the current flow and therefore, the coil acts more
like a short circuit allowing maximum current to flow through it.
However, in an alternating current circuit which contains an AC Inductance,
the flow of current through an
inductor behaves very differently to that of a steady state DC voltage.
Now in an AC circuit, the opposition to the current flowing through the
coils windings not only depends upon the inductance of the coil but also
the frequency of the applied voltage waveform as it varies from its
positive to negative values.
The actual opposition to the current flowing through a coil in an AC circuit is determined by the
AC Resistance
of the coil with this AC resistance being
represented by a complex number. But to distinguish a DC resistance
value from an AC resistance value, which is also known as Impedance, the
term Reactance is used. Like resistance, reactance is measured in Ohm's but is given the symbol X
to distinguish it from a purely resistive R value and as the component in question is an inductor, the reactance of
an inductor is called Inductive Reactance, ( XL ) and is measured in Ohms.
Its value can be found from the formula.
Inductive Reactance
Where: XL is the Inductive Reactance in Ohms, ƒ is the
frequency in Hertz and L is the inductance of the coil in Henries.
We can also define inductive reactance in radians, where Omega, ω equals 2πƒ.
So whenever a sinusoidal voltage is applied to an
inductive coil, the back emf opposes the rise and fall of the current
flowing
through the coil and in a purely inductive coil which has zero
resistance or losses, this impedance (which can be a complex number) is
equal to its
inductive reactance. Also reactance is represented by a vector as it has
both a magnitude and a direction (angle). Consider the circuit below.
AC Inductance with a Sinusoidal Supply
This simple circuit above consists of a pure inductance of L Henries ( H ), connected across a sinusoidal voltage given by the expression: V(t) = Vmax sin ωt. When the switch is closed this sinusoidal voltage will cause a current to flow and rise from zero to its maximum value. This rise or change in the current will induce a magnetic field within the coil which in turn will oppose or restrict this change in the current.
But before the current has had time to reach its maximum value as it would in a DC circuit, the voltage
changes polarity causing the current to change direction. This change in the other direction once again being delayed by
the self-induced back emf in the coil, and in a circuit containing a pure inductance only, the current is delayed by 90o.
The applied voltage reaches its maximum positive value a quarter ( 1/4ƒ )
of a cycle earlier than the current reaches its maximum positive value, in other words, a voltage applied to a purely
inductive circuit "LEADS" the current by a quarter of a cycle or 90o as shown below.
Sinusoidal Waveforms for AC Inductance
This effect can also be represented by a phasor diagram were in a purely inductive circuit the voltage "LEADS" the current by 90o. But by using the voltage as our reference, we can also say that the current "LAGS" the voltage by one quarter of a cycle or 90o as shown in the vector diagram below.
Phasor Diagram for AC Inductance
So for a pure loss less inductor, VL "leads" IL by
90o, or we can say that IL "lags" VL by 90o.
There are many different ways to remember the phase relationship between the voltage and current flowing through a
pure inductor circuit, but one very simple and easy to remember way is to use the mnemonic expression "ELI"
(pronounced Ellie as in the girls name). ELI stands for Electromotive force first
in an AC inductance, L before the current I. In other words, voltage before the
current in an inductor, E, L, I equals
"ELI", and whichever phase angle the voltage starts at, this expression always holds true
for a pure inductor circuit.
The Effect of Frequency on Inductive Reactance
When a 50Hz supply is connected across a suitable AC Inductance, the current will be delayed by 90o as
described previously and will obtain a peak value of I amps before the voltage reverses polarity at the end
of each half cycle, i.e. the current rises up to its maximum value in "T secs". If we now apply a 100Hz
supply of the same peak voltage to the coil, The current will still be delayed by 90o
but its maximum value will be lower
than the 50Hz value because the time it requires to reach its maximum
value has been reduced due to the increase in frequency because
now it only has "1/2 T secs" to reach its peak value. Also, the rate of change of the flux within the coil
has also increased due to the increase in frequency.
Then from the above equation for inductive reactance, it can be seen that if either the Frequency OR
the Inductance is increased the overall inductive
reactance value of the coil would also increase. As the frequency
increases and approaches infinity, the inductors reactance and therefore
its impedance would also increase towards infinity acting
like an open circuit. Likewise, as the frequency approaches zero or DC,
the inductors reactance would also decrease to zero, acting
like a short circuit. This means then that inductive reactance is
"directly proportional to frequency" and has a small value at low
frequencies and a high value at higher frequencies as shown.
Inductive Reactance against Frequency
The inductive reactance of an inductor increases as the frequency across it increases therefore inductive reactance is proportional to frequency ( XL α ƒ ) as the back emf generated in the inductor is equal to its inductance multiplied by the rate of change of current in the inductor. Also as the frequency increases the current flowing through the inductor also reduces in value. |
We can present the effect of very low and very high frequencies on a the reactance of a pure AC Inductance as follows:
In an AC circuit containing pure inductance the following formula applies:
So how did we arrive at this equation. Well the self induced emf in the inductor is determined by Faraday's
Law that produces the effect of self-induction in the inductor due to the rate of change of the current and the maximum value
of the induced emf will correspond to the maximum rate of change. Then the voltage in the inductor coil is given as:
then the voltage across an AC inductance will be defined as:
Where: VL = IωL which is the voltage
amplitude and θ = + 90o which is the phase
difference or phase angle between the voltage and current.
In the Phasor Domain
In the phasor domain the voltage across the coil is given as:
and in Polar Form this
would be written as: XL∠90o where:
AC through a Series R + L Circuit
We have seen above that the current flowing through a purely inductive coil lags the voltage by
90o and when we say a purely inductive coil we mean one that has no ohmic resistance
and therefore, no I2R losses. But in the real world, it is impossible to have a purely
AC Inductance only.
All electrical coils, relays, solenoids and transformers will have a certain amount of resistance
no matter how small associated with the coil turns of wire being used. This is because copper wire has resistivity. Then
we can consider our inductive coil as being one that has a resistance, R in series with an
inductance, L producing what can be loosely called an "impure inductance".
If the coil has some "internal" resistance then we need to represent the total impedance of the coil as
a resistance in series with an inductance and in an AC circuit that contains both inductance, L
and resistance, R the voltage, V across the combination will be the
phasor sum of the two component voltages, VR and VL.
This means then that the current flowing through the coil will still lag the voltage, but by an amount
less than 90o depending upon the values of VR and VL,
the phasor sum. The new angle between the voltage and the current waveforms gives us their
Phase Difference which as we know
is the phase angle of the circuit given the Greek symbol phi, Φ.
Consider the circuit below were a pure non-inductive resistance, R is connected in
series with a pure inductance, L.
Series Resistance-Inductance Circuit
In the RL series circuit above, we can see that the current is common to both the resistance and the inductance while the voltage is made up of the two component voltages, VR and VL. The resulting voltage of these two components can be found either mathematically or by drawing a vector diagram. To be able to produce the vector diagram a reference or common component must be found and in a series AC circuit the current is the reference source as the same current flows through the resistance and the inductance. The individual vector diagrams for a pure resistance and a pure inductance are given as:
Vector Diagrams for the Two Pure Components
We can see from above and from our previous tutorial about
AC Resistance that the voltage and current in a
resistive circuit are both in phase and therefore vector VR
is drawn superimposed to scale onto the
current vector. Also from above it is known that the current lags the
voltage in an AC inductance (pure) circuit therefore vector
VL is drawn 90o in front of the current and to the same scale as
VR as shown.
Vector Diagram of the Resultant Voltage
From the vector diagram above, we can see that line OB is the horizontal current reference
and line OA is the voltage across the resistive component which is in-phase with the current. Line
OC shows the inductive voltage which is 90o in front of the current therefore it can still be
seen that the current lags the purely inductive voltage by 90o. Line OD gives us the resulting
supply voltage. Then:
- V equals the r.m.s value of the applied voltage.
- I equals the r.m.s. value of the series current.
- VR equals the I.R voltage drop across the resistance which is in-phase with the current.
- VL equals the I.XL voltage drop across the inductance which leads the current by 90o.
As the current lags the voltage in a pure inductance by exactly 90o the resultant phasor diagram drawn
from the individual voltage drops VR and VL represents a
right angled voltage triangle shown above as OAD. Then we can also use Pythagoras's theorem to mathematically
find the value of this resultant voltage across the resistor/inductor ( RL ) circuit.
As VR = I.R and VL = I.XL
the applied voltage will be the vector sum of the two as follows:
The quantity
represents the impedance of the circuit.
The Impedance of an AC Inductance
Impedance, Z is the "TOTAL" opposition to current flowing in an AC circuit that contains both Resistance,
( the real part ) and Reactance ( the imaginary part ). Impedance also has the units of Ohms, Ω's.
Impedance depends upon the frequency, ω of the circuit as this affects the circuits reactive components
and in a series circuit all the resistive and reactive impedances add together.
Impedance can also be represented by a complex number, Z = R + jXL
but it is not a phasor, it is the result of two or more phasors combined together. If we divide the sides of the voltage
triangle above by I, another triangle is obtained whose sides represent the resistance, reactance
and impedance of the circuit as shown below.
The RL Impedance Triangle
Then: ( Impedance )2 = ( Resistance )2 + ( j Reactance )2 where j represents the 90o phase shift.
This means that the positive phase angle, θ between the voltage and current is given as.
Phase Angle
While our example above represents a simple non-pure AC inductance, if two or more inductive coils are connected together in series or a single coil is connected in series with many non-inductive resistances, then the total resistance for the resistive elements would be equal to: R1 + R2 + R3 etc, giving a total resistive value for the circuit.
Likewise, the total reactance for the inductive elements would be equal to:
X1 + X2 + X3
etc, giving a total reactance value for the circuit. This way a circuit
containing many chokes, coils and resistors can be easily
reduced down to an impedance value, Z comprising of a single resistance in series with a single reactance,
Z2 = R2 + X2.
Example No1
In the following circuit, the supply voltage is defined as:
V(t) = 230 sin( 314t - 30o )
and L = 2.2H. Determine the value of the current flowing through the coil
and draw the resulting phasor diagram.
The voltage across the coil will be the same as the supply voltage. Converting this time domain value into
polar form gives us: VL = 230 ∠-30o (v). The inductive
reactance of the coil is: XL = ωL = 314 x 2.2 = 690Ω.
Then the current flowing through the coil can be found using Ohms law as:
With the current lagging the voltage by 90o the phasor diagram will be.
Example No2
A coil has a resistance of 30Ω and an inductance of 0.5H. If the current flowing through the coil is
4amps. What will be the value of the supply voltage if its frequency is 50Hz.
The impedance of the circuit will be:
Then the voltage drops across each component is calculated as:
The phase angle between the current and supply voltage is calculated as:
The phasor diagram will be.
In the next tutorial about AC Capacitance
we will look at the Voltage-current relationship of a capacitor when a steady state sinusoidal AC waveform is applied to
it along with its phasor diagram representation for both pure and non-pure capacitors.
It's a nice post about inductive reactance. I like the way you have described it. Thanks for sharing it.
ReplyDelete