Crossover Distortion
We have seen that one of the main disadvantages of a Class A Amplifier is its low full
power efficiency rating. But we also know that we can improve the amplifier and almost double its efficiency simply by changing
the output stage of the amplifier to a Class B push-pull type configuration. However, this is great from an efficiency point
of view, but most modern Class B amplifiers are transformerless or complementary types with two transistors in their output
stage.
This results in one main fundamental problem with push-pull amplifiers in that the two transistors do not
combine together fully at the output both halves of the waveform due to their unique zero cut-off biasing arrangement. As
this problem occurs when the signal changes or "crosses-over" from one transistor to the other at the zero voltage point it
produces an amount of "distortion" to the output wave shape. This results in a condition that is commonly called
Crossover Distortion.
Crossover Distortion produces a zero voltage "flat spot" or "deadband" on the output wave shape
as it crosses over from one half of the waveform to the other. The reason for this is that the transition period when the
transistors are switching over from one to the other, does not stop or start exactly at the zero crossover point thus
causing a small delay between the first transistor turning "OFF" and the second transistor turning "ON". This delay
results in both transistors being switched "OFF" at the same instant in time producing an output wave shape as shown below.
Crossover Distortion Waveform
In order that there should be no distortion of the output waveform we must assume that each transistor
starts conducting when its base to emitter voltage rises just above zero, but we know that this is not true because for
silicon bipolar transistors the base voltage must reach at least 0.7v before the transistor starts to conduct thereby
producing this flat spot. This crossover distortion effect also reduces the overall peak to peak value of the output
waveform causing the maximum power output to be reduced as shown below.
Non-Linear Transfer Characteristics
This effect is less pronounced for large input signals as the input voltage is usually quite large
but for smaller input signals it can be more severe causing audio distortion to the amplifier.
Pre-biasing the Output
The problem of Crossover Distortion can be reduced considerably by applying a slight forward
base bias voltage (same idea as seen in the
Transistor tutorial) to the bases of
the two transistors via the centre-tap of the input transformer, thus the transistors are no longer biased at the zero
cut-off point but instead are "Pre-biased" at a level determined by this new biasing voltage.
Push-pull Amplifier with Pre-biasing
This type of resistor pre-biasing causes one transistor to turn "ON" exactly at the same time
as the other transistor turns "OFF" as both transistors are now biased slightly above their original cut-off point.
However, to achieve this the bias voltage must be at least twice that of the normal base to emitter voltage to turn
"ON" the transistors. This pre-biasing can also be implemented in transformerless amplifiers that use complementary
transistors by simply replacing the two potential divider resistors with Biasing Diodes as shown below.
Pre-biasing with Diodes
This pre-biasing voltage either for a transformer or transformerless amplifier circuit, has the
effect of moving the amplifiers Q-point past the original cut-off point thus allowing each transistor to operate
within its active region for slightly more than half or 180o of each half cycle. In other words
180o + Bias. The amount of diode biasing voltage present at the base terminal of the transistor
can be increased in multiples by adding additional diodes in series. This then produces an amplifier circuit commonly
called a Class AB Amplifier and its biasing arrangement is given below.
Class AB Output Characteristics
Crossover Distortion Summary
Then to summarise, Crossover Distortion occurs in Class B amplifiers because
the amplifier is biased at its cut-off point. This then results in BOTH transistors being switched "OFF" at the
same instant in time as the waveform crosses the zero axis. By applying a small base bias voltage either by using
a resistive potential divider circuit or diode biasing this crossover distortion can be greatly reduced or even
eliminated completely by bringing the transistors to the point of being just switched "ON".
The application of a biasing voltage produces another type or class of amplifier circuit commonly
called a Class AB Amplifier. Then the difference between a pure Class B amplifier and an improved
Class AB amplifier is in the biasing level applied to the output transistors. One major advantage of using diodes
over resistors is that the pn-junctions compensate for variations in the temperature of the transistors. Therefore,
we can say the a Class AB amplifier is a Class B amplifier with "Bias" and we can summarise as:
- Class A Amplifiers – No Crossover Distortion as they are biased in the centre of the load line.
- Class B Amplifiers – Large amounts of Crossover Distortion due to biasing at the cut-off point.
- Class AB Amplifiers – Some Crossover Distortion if the biasing level is set too low.
0 comments:
Post a Comment
Click to see the code!
To insert emoticon you must added at least one space before the code.